J Comput Virol (2009) 5:171-186
DOI 10.1007/s11416-008-0089-x

ORIGINAL PAPER

Specification and evaluation of polymorphic shellcode properties using

a new temporal logic

Mehdi Talbi - Mohamed Mejri - Adel Bouhoula

Received: 18 December 2007 / Revised: 2 June 2008 / Accepted: 8 June 2008 / Published online: 1 July 2008

© Springer-Verlag France 2008

Abstract It is a well-known fact that polymorphism is one
of the greatest find of malicious code authors. Applied in
the context of Buffer Overflow attacks, the detection of such
codes becomes very difficult. In view of this problematic,
which constitutes a real challenge for all the international
community, we propose in this paper a new formal language
(based on temporal logics such as CTL) allowing to specify
polymorphic codes, to detect them and to better understand
their nature. The efficiency and the expressiveness of this lan-
guage are shown via the specification of a variety of proper-
ties characterizing polymorphic shellcodes. Finally, to make
the verification process automatic, this language is supported
by a new IDS (Intrusion Detection System) that will also be
presented in this paper.

1 Introduction

Statistics provided by the NVD (National Vulnerability Data-
base) [7] and based on US-CERT alerts [14] reveal that the
most common vulnerabilities are Buffer Overflow. Intuiti-
vely, a Buffer overflow is a kind of programming error that

M. Talbi (X)) - A. Bouhoula

Digital Security Unit, Higher School of Communications of Tunis,
Tunis, Tunisia

e-mail: mehdi.talbi@rennes.supelec.fr

A. Bouhoula
e-mail: bouhoula@planet.tn

M. Mejri

LSFM Research Group, Computer Security Department,
Laval University, Quebec, QC, Canada

e-mail: momej@ift.ulaval.ca

occurs when a physical input (memory space) receives a large
and unexpected value. Attacks that exploit such vulnerabi-
lities, which are mainly due to programmer’s carelessness,
can cause serious problems. For example, they can cause
the crash of a machine (Denial of Service) and, even worse,
they can lead the attacker to get the complete control of the
targeted machine. The most famous example of the Buffer
Overflow problem is related to the Ariane 5 [33] space laun-
cher that crashed shortly after the takeoff in 1996. It was
discovered later that the origin of the problem was due to
a 16-bit program that could not recognize and use a 64-bit
input (Integer Overflow).

Several techniques and tools [10,19,22] have been pro-
posed during last years to detect Buffer Overflow attacks.
In spite of their great contribution in this field, they are still
far from solving the problem. This is due to the subtlety
and the complexity of the problem on the one hand, and
the remarkable evolution of tools and techniques allowing to
discover and exploit these kind of flaws on the other hand.
Flawfinder [2], Rats [11], and Retina [12] are examples of
source code scanner allowing to detect security flaws. Avai-
lable platforms such as Nessus [8] and Metasploit [5] allow to
perform various intrusion tests. However, the real revolution
in the world of Buffer Overflow attacks comes undoubtedly
from the techniques of shellcode obfuscation, which are more
and more sophisticated. Issued from the viral scene, poly-
morphism (payload encoding) is the last find of malicious
code authors and can be applied to shellcodes as well. As a
result, the malicious code is different at each time making
obsolete pattern matching based techniques. Clet team claim
that their polymorphic shellcode engine [24] can even defeat
Data Mining based IDSs. The reading of [29], which deals
with new categories of worms, that mutate and take form
according to statistics elaborated on the flow analysis, gives
some shivers.

@ Springer

172

M. Talbi et al.

Most of recent systems [16,40,44] proposed to detect
polymorphic shellcodes are based on some observations (par-
ticular patterns and/or behaviors), and the whole detection
mechanism is based on these observations. Their interac-
tion with end-users are reduced to the definition of a few
parameters limiting their detection capabilities. Formal
language-based detection approaches allow to overcome
these limitations. Indeed, in such approach, the end-user
can express his own observations. In this paper, we propose
a new formal language (based on temporal logics) for the
specification of a large variety of properties characterizing
polymorphic shellcodes. Our intention is to verify these pro-
perties against a model (traffic abstraction). More precisely,
we want to check the satisfaction relation M = ¢, where
M is a model representing an abstraction of the audit trail,
and ¢ a formula characterizing a polymorphic shellcode pro-
perty. The simplicity, the expressiveness, and the efficiency
of the proposed language are shown via different examples
given in this paper. This language is also supported by an
IDS prototype making the detection step automatic as it will
be shown in this paper.

The remainder of this paper is organized as follows: Sect. 2
describes Buffer Overflow exploits and presents obfusca-
tion techniques allowing to hide malicious payload in Buffer
Overflow attacks. Section 3 presents the model against which
the properties will be checked. Section 4 introduces LTL and
CTL temporal logics and presents the syntax and semantics
of the proposed logic. Section 5 presents properties characte-
rizing polymorphic shellcodes. Section 6 describes the IDS-
Logic prototype. Section 7 evaluates the efficiency of the
proposed properties to detect polymorphic shellcodes. Sec-
tion 8 discusses related work, and finally, some concluding
remarks on this work are ultimately sketched as a conclusion
in Sect. 9.

2 Polymorphic shellcodes

In this section, we briefly present Buffer Overflow attacks
together with common obfuscation techniques used to hide
the malicious payload and specially polymorphic techniques
(payload encryption).

2.1 Exploiting buffer overflow vulnerabilities

Buffer Overflow attacks were popularized by Alephl in [17].
In this section, we explain how to exploit Buffer Overflow
vulnerabilities through the vulnerable code example (vuln.c)
given hereafter:

@ Springer

int func(char *srcbuff)

{

char destbuff[100];
strepy(destbuff, srcbuff);
return 0;

}

In vuln.c, the strcpy() function does not check if the des-
tination buffer (destbuff) is big enough to contain the data
of the source buffer (srcbuff). Therefore, destbuff can be
overflowed. To avoid this, it is sufficient to replace strcpy()
function by its alternative form strncpy().

Figure 1 represents the program vuln in memory before
and after the call of the strcpy() function. In order to exploit
vuln program, one can inject in memory a malicious code
(e.g. shellcode /bin/sh) and overwrite EIP pointer with a
return address (RET) that points to the beginning of the mali-
cious code. Thus, when the function func(char *) returns,
the execution flow is redirected to the malicious code: the
shellcode is executed. Note that in a remote Buffer Overflow
attacks, we do not know exactly the memory address where
the malicious code is stored. However, this address can be
estimated by reproducing the same environment according to
the target machine (OS/Architecture/Verion of the vulnerable
application). In order to compensate the return address esti-
mation error, a sequence of nop instructions (0x90) is added
to the beginning of the payload. A nop instruction performs a
null operation. Thus, if the execution flow is redirected to the
NOP section, these instructions will be executed until they
reach the malicious code. Also, in order to ensure that the
EIP pointer is overwritten with the estimated value, the RET
address is repeated several times after the malicious code.
The malicious payload has therefore the structure given in
Fig. 2.

srcbuff srcbuff
EIP | RET
EBP e
Malicious
dstbuff code
— —

Before strcpy() call After strcpy() call

Fig. 1 Memory organization

Specification and evaluation of polymorphic shellcode properties using a new temporal logic 173

| NOP | Shellcode | RET |

Fig. 2 Classical payload

Note that a long sequence of nop instructions, a repea-
ted return address, and some byte-sequences in shellcodes
(e.g. string “/bin/sh”) are characteristics of Buffer Overflow
attacks, and therefore it is trivial for an IDS to detect the
malicious payload given in Fig. 2. However, malicious code
authors have developed several techniques allowing to obfus-
cate the malicious payload and in particular to hide the shell-
code.

2.2 Shellcode obfuscation techniques

In this section, we present common obfuscation techniques
used by hackers, and explain how these techniques can be
applied to build up polymorphic shellcodes.

Obfuscation techniques

e Instruction Insertion: consists in inserting junk instruc-
tions/bytes between the relevant part of the shellcode.

e Code Transposition: consists in changing the order of ins-
tructions.

e Register Renaming: consists in changing the name of the
used registers. For instance, inc %eax and inc %ebx
have different opcodes, and therefore replacing eax by
ebx will produce different byte-sequences in shellcodes.

e Instruction Substitution: consists in replacing some ins-
tructions by their semantically equivalent ones. For ins-
tance, the instruction add % eax, 2 can be substituted with
two instructions inc %eax. Note that for some particu-
lar instructions these substitutions are not possible. For
instance, the instruction int has no equivalent.

e Alphanumeric Instructions: consists in using ASCII
opcodes. Non-alphanumeric instructions in an alphanu-
meric communication is suspicious. Alphanumeric shell-
codes [39] are useful for hackers when the target service
accepts only alphanumeric inputs.

e Polymorphism: consists in ciphering the shellcode and
attached to it a decipher routine which is different from
one attack to another (e.g. by applying metamorphism
techniques such as instruction substitution and register
renaming). Thus, when the malicious code is executed,
the decipher routine is launched first to recover the ori-
ginal form of the shellcode and then the control is given
to this code. The literature records many automatic and
polymorphic shellcode engines. The most popular are

ADMmutate [28], Clet, JempiScode [41], and those
proposed by the Metasploit framework.

Polymorphic shellcode anatomy

Issued from the viral scene, polymorphism is the last find of
malicious code authors and can be applied to shellcodes as
well. As a result, the malicious code is different at each time
making obsolete pattern matching based techniques. In the
case of Buffer Overflow attacks, a polymorphic payload has
generally the structure given in Fig. 3.

A polymorphic payload is made up of the following parts:

e FAKE_NOP (NOP replacement instructions): instead of
nop instruction, one can use any other one-byte instruc-
tion which has no significant effect (e.g. inc %eax, dec
% eax). The only constraint is to reach the decipher rou-
tine without errors. The FAKE_NOP list used by ADM-
mutate engine contains about fifty instructions. Clet
engine uses alphanumeric instruction list to build up the
FAKE_NOP section. However, these lists do not present
a large range of choices, and FAKE_NOP can be easily
detected by any IDS maintaining similar lists. One solu-
tion is to extend these lists with several-bytes instructions
that satisfy the following condition: suffix and arguments
of instructions must be instructions themselves. Thus, it
is possible to read valid instructions and reach the deci-
pher routine without errors. The tool ecl-poly [27] allows
to generate such FAKE_NOP instructions.

e Decipher Routine: shellcode encryption is based on
simple reversible operations (e.g. add/sub, rol/ror, xor).
In order to have a completely polymorph code, it is impe-
rative that decipher routine code is different at each time.
To achieve this goal, metamorphic obfuscation techniques
are used. For example, Clet engine applies instruction
substitution and register renaming techniques in order to
hide the decipher routine. ADMmutate uses instruction
substitution and instruction insertion techniques.

e Padding Zone: this zone is used to pad the empty spaces
between the shellcode and the return address. This zone
was exploited cleverly by Clet team. It is about an origi-
nal idea consisting in filling the padding zone in such a
way that the result looks like a normal traffic in terms of
probability distribution.

e Return Address: currently, there is only one technique to
hide the return address. It consists in varying, from one

lFAKE?NOP ‘ Decipher routine | Ciphered shellcode ‘ PAD ‘ RET‘

Fig. 3 Polymorphic payload

@ Springer

174

M. Talbi et al.

attack to another, the low-weight bits (1 byte) of the return
address.

In [20], we can find several program obfuscation tech-
niques which could be applied to polymorphic shellcodes.

3 Model

One of the basic steps of intrusion detection is the audit
trail analysis. It allows to record and analyse some parti-
cular actions that have been performed on a system during
a period of time. An example of these analyses is to make
detection of particular sequence of events characterizing an
attack signature.

Almost all related works such as [26,32] use a trace-
based model (i.e. linear model), where a trace is defined as a
sequence of events collected from an audit source (e.g. net-
work, host). In the sequel, a trace is denoted by 7, an event
is denoted by e and we use the following notations:

If:

T=¢€1,€2,...,€,€4],...,€n
then :

T[i] = event ¢;

;i =suffixe;, eiqr1,...,en

In case of network source, event e; represents the jth
packet of the trace, where a packet is specified by a set of
fields (protocol, dport, daddr, ...) as following:

Packet = fdy, fda, ..., fd,

with:
Packet. fd; = content of the field fd;

Although that the level of traffic abstraction presented
above is enough to detect a large variety of attack (e.g. IP
Spoofing, Scan, Fragment attacks) using temporal logics (e.g.
LTL, ADM), many others attacks require a more detailed
model. In particular, to detect some polymorphic shellcodes,
adeep analysis of the body field (i.e. Packet.body) is neces-
sary. For that reason, we choose to abstract the body field not
by a sequence of bits but by a CFG graph (Control Flow
Graph) as explained hereafter.

The detection of malicious codes is principally based on
the body field part. The simple fact of considering the content
of this field as a sequence of bits allows us to identify some
attacks. For example, we can analyze this field to detect the
return address or some invariant bits sequence between seve-
ral mutation of a polymorphic shellcode. However, many
polymorphic shellcodes can easily escape from being disco-
vered using such analysis. For that reason, several solutions
(e.g. APE [44], STRIDE [16], HDE [37]) have recourse to

@ Springer

code disassembly to better analyze the nature of malicious
codes. As a result, many interesting observations have been
made (e.g. invariance of the decipher routine structure). The-
refore, in order to take advantage of these observations, we
need to refine our trace-based model and specially to refine
the representation of the body field content. At first glance,
we can be tempted to use a linear model (a sequence of ins-
tructions) to represent disassembled code of the body field
part. However, this structure has two major drawbacks:

e Malicious code authors can insert junk instructions bet-
ween the relevant parts of the code and use jmp instruc-
tions to jump over junk bytes. Junk data allows to hide the
shellcode from detection engines which perform linear
disassembly.

e Some shellcode obfuscation techniques use jmp instruc-
tions to jump into the middle of other instructions. This
technique well-known as PEX, and issued from the
Metasploit framework, is used to hide in particular the
decipher routine.

In order to overcome these disadvantages, it is necessary
to follow the execution trace. The following of all possible
paths (case of conditional jump instructions: jne, jz, etc.)
leads to an arborescent model which corresponds to a CFG
graph. Moreover, the statistical study done for Clet, ADM-
mutate and JempiScode generated code, leads us to the same
conclusion as given in [31]. These engines being automatic,
it results that some parts of the generated code are presen-
ted in the vast majority of the cases according to the same
structure (see Fig. 7). So, it is interesting to specify some
properties related to such structure. Therefore, we will use
an arborescent model rather than a linear one as an auxiliary
representation of the body field content. Now, a packet is
represented as follows:

Packet = fd\, fdo, ..., fdn, MCFG (pos)

where Mc g (pos) is an arborescent model associated with
the CFG graph. It records events related to packet-data disas-
sembly which is performed from the position pos. This choice
is motivated by the fact that the content of the body field
contains, in the case of malicious code, a data region which
doesn’t correspond to an executable code (e.g. HTTP hea-
der). Disassembly of non-code regions may then have an
influence on the CFG graph. The ideal thing would be to
perform disassembly from the first instructions of the NOP
section. We can consider here, CFG(pos) as a function that
generates the CFG graph corresponding to the disassembly of
the body field content starting from the position pos. Howe-
ver, certain properties do not require disassembly process. In
order to be in accordance with the given model, a possible
solution would be to provide a negative value as an argu-
ment to the CFG() function (e.g. CFG(-1) returns a single

Specification and evaluation of polymorphic shellcode properties using a new temporal logic 175

empty node). Disassembly operation is potentially costly in
intrusion detection. The fact of not having to systemize this
process is a considerable advantage.

Formally, a graph can be represented according to several
models. Among these are the Labelled Transition System [38]
and the Kripke structure [30]. In the first case configuration,
emphasis is placed on the actions that the system can do,
whereas in Kripke structure, emphasis is placed on the ato-
mic propositions that are true in a state, rather on the actions
that allow transitions from one state to another. In our CFG
graph, nodes are made up of sequence of instructions. These
nodes are interconnected through branch instructions. There-
fore, it is more suitable to use the Kripke structure as a model
to represent a CFG graph, since the relevant information is
associated to nodes rather than to transitions between these
nodes. A path 7 in M¢rg is a sequence of states:

T = 81,8258 Si+1s---55m

with (s;, si+1) €—, foralli € {1,...,m}. “—" is the tran-
sition relation of the Kripke structure.

Finally, we will use a linear model to represent the
sequence of instructions at node level. The sequence of ins-
tructions is defined as following:

o =M0,0,...,0,..., 1

The event t; corresponds to the ith instruction. Likewise
the case of a packet, an instruction is represented as a set of
fields (inst, opcode, ...).

The proposed model can be summarized as shown by
Fig. 4. The Mpgycrer model represents the sequence of
packets. Mg is the model associated with the CFG graph.
Finally, M,s; represents the sequence of instructions at
node level.

4 Specification language

This section introduces a language for the specification and
detection of polymorphic shellcodes. Our intention is to pro-
pose a formal and appropriate language in order to specify a
large variety of polymorphic shellcode properties, and then
to check them against the previously defined model.
Existing formal languages for properties specification
[26,32] are not dedicated to polymorphic shellcodes. In [26],
Ben Ghorbel et al. propose to use the ADM logic [15] in order
to specify attack signatures. ADM can be viewed as a spe-
cial variant of u-calculus modal logic [42]. Initially designed
for the specification of electronic commerce properties, it is
also appropriate for the intrusion detection issue. In [32],
Lesperance et al. use LTL for properties specification. The
main shortcoming of these two logics is that their constructs
are interpreted over a trace-based model, where a trace is a
sequence of packets. As explained in the previous section,
this model is not enough complete to describe events related
to polymorphic shellcodes. However, we can extend these
logics with the ability to specify and check formulae against
the proposed model. Compared to LTL, the ADM logic is
more complex. Therefore, we will use LTL in order to spe-
cify properties and to check them against M p,co; model.
Then, we will extend LTL in order to allow the specification
of formulae with regard to M ¢rg model. This can be done
by the use of an arborescent logic in an embedded manner to
LTL. CTL logic is the most appropriate one, as it represents
the arborescent version of LTL. This implies a certain homo-
geneity in the language that we propose. Moreover, Kripke
structure, used as model to represent a CFG graph, is often
associated with temporal logics such as CTL. Finally, in order
to allow the specification of formulae with regard to M,

/ e rotocol protocel protocel
M Packet :addr Merg b—Jdaddr Megg fommeemeeeeee|dadde Merg
etc. = etc. = etc. =
T = Packet, Packet,,...,Packet,,
Packet = .JI-”II-.JII"'I'.E-----.IF”;H--ML.'FsFum.-::-
Mcrgpos) [y
size =
7 7 Minst
i
size Mgt size Mnat inst inst I inst
] = opcode opcode opcade
il [
I [a1 Mput o = Inst,,Inst,,....Inst,
2 = et / s = Inst = fdy.fda.....fdy

7w = Node, ,Node,,....Node,,
Node = fdy.fda,....fdy M nst

Fig. 4 Model

@ Springer

176

M. Talbi et al.

model, we have to extend the CTL logic. This can be done by
the use of a linear logic in an embedded manner to CTL. To
this end, we will use again the LTL logic. Therefore, the pro-
posed language is based on LTL and CTL temporal logics.
Before presenting our logic with its syntax and semantics, let
us give a brief introduction to LTL and CTL logics.

4.1 Temporal logics
Linear temporal logic

LTL syntax is defined by the BNF-grammar given in Table 1.
The symbols — and V represent negation and disjunction,
respectively. p is an atomic proposition. Finally, X (NeXt)
and U (Until) are temporal operators.

LTL constructs are interpreted over a sequence of states o.
The formula X ¢ is satisfied at a state sg in o if ¢ is satisfied in
the next state (s1). The formula (¢ U ¢,) is satisfied at a state
so in o if ¢ is satisfied at a state s (k > 0), and ¢ is satisfied
in all states s; that precede s (0 < i < k). From temporal
operator U, we can derive two useful temporal modalities:
F (¢) (Finally) and G (¢) (Globally). Their formal definitions
are given in Table 6. F(¢) is satisfied by o if there exists a
state s; (k > 0) in o that satisfies ¢. G(¢) is satisfied by o
if ¢ is satisfied at each state in o. Table 2 gives the intuitive
meaning of LTL temporal modalities.

Computational tree logic

CTL has the same syntax as LTL with the following addi-
tional requirement: temporal operators (X, U, F and G) are
prefixed by path quantifiers A (All paths) or E (there Exists
a path). CTL syntax is defined by the BNF-grammar given
in Table 3. Formulae such as AF(¢), AG(¢), etc., can be
derived using the abbreviations given in Table 6.

CTL constructs are interpreted over an arborescent model
M (Kripke structure) having as root a state sq. Table 4 gives
the intuitive meaning of CTL temporal modalities.

Table 1 LTL syntax
Ppu=pl-d| (@1 V)| X$| (@1Ug)

Table 2 LTL temporal modalities

OO0 0

o|=X(p) o|=(Ug)
0000
o|=F(p) o|=G(p)

@ Springer

Table 3 CTL syntax
Ppu=pl=d|(@1Ve)| EX(P) | EG() | E(p1U¢o)

Table 4 CTL temporal modalities

4.2 Proposed logic
Syntax and semantics

The syntax of our logic is defined by the BNF-grammar given
in Table 5.
We note that:

Ly = LTL([a])
Lo =CTL(< V¢ >)
Lg=LTL

e LTL[x] means that states of the M p,cre; model are
no longer verified through classical LTL atomic propo-
sitions, but through more complex formulae given by
Q-grammar.

e Similarly for CTL< v >, states of the Mg model are
verified through formulae specified in 1-grammar.

We have also introduced some slight modifications to LTL
and CTL grammars:

e In the neXt formula, we are not only interested by the
successor state, but also by the current state (e.g. formula
[a].@).

e We have introduced a new formula to CTL (|0],,) that
limits CFG graph paths to a depth equal to w. This pre-
vents from a potential infinite loop when checking for-
mulae of type E(61U6,).

Note that classical shortcuts such that A, —, <, F(¢), G(¢),
etc., can be used with their usual meaning shown in Table 6.

Specification and evaluation of polymorphic shellcode properties using a new temporal logic 177

Table 5 Syntax

¢ =[] | [a]g [(G1US2) | 1V ¢2) | —¢

o = Ppacket [0] (a1 Va) | —a

O =<y >~ E(=¥>.0)| EGO) | E01U0) | (01V60)|—0]|[0]w

V= Puode | B (Y1 VY2) | =Y

B = {Pinst} | {Pinsi}.B 1 (B1UB2) | (B1V B2) | =B

Mpacker
Packet
Mcrae
Node
Minst

Table 6 Abbreviation of formulae
L=-T

(@1 A P2) =~ (=¢1 vV —¢2)

(@1 —>) = (1 V $2)

(@1 < ¢2) = (41 > ¢2) A (P2 = ¢1))
F(¢) =(TU®)

G(@) = (=F(—¢))

AG(¢) = —EF(—¢)

AF(¢) = ~EG(—¢)

EF(¢) = E(TU®)

A@1U¢2) = (mE(—=h2U (=1 A =¢2)) A —=EG(—¢2))
A(¢1.92) = ~(E(—=¢1.¢2) V E($1.7¢2))

The logic defines 3 types of atomic propositions: Ppacker
Pyode and Py that correspond to Packet, Node and Ins-
truction events (respectively). These propositions have all
the same format: Name Operator Value. The term Name
is an element of fields list defined for each event. Operator
is used for comparison, and Value is a simple value or an
interval of values.

e Atomic Proposition P,,cie: the set of fields to be
checked is defined through the proposition Name.

Name ::= protocol | saddr | sport | daddr
| dport | flags | frags | body

e flags represents the set of TCP flags: urg, ack, push,
rst, syn, and fin.

e frags represents the set of fragmentation fields: fo and
mf.

Examples:

protocol = “tcp”

dport = 80, 8080, 8888

daddr = 10.10.10.0. ..10.10.10.254
flags = 010010 (syn and ack are set)
body = X + “/bin/sh” + Y

M

In the case of the last proposition, X and Y are variables.
The “+” operator enables the concatenation of two strings.

e Atomic Proposition P,,;.: we associate to Node event
two attributes: id (node identifier) and size (number of
instructions in a node).

e Atomic Proposition P;,;: Intel manual [3] defines the
format of instructions. The overall fields which constitute
this structure, enables to determinate the nature of the ins-
truction, its parameters and the involved registers. In this
study, we define two attributes in order to represent an ins-
truction: opcode (instruction code) and inst (instruction
name).

Examples:

LEINT3 LEINT3 CLINT3

1. inst = “xor”, “ror”, “rol”, “not”, “and”
2. opcode = “\x90” (nop instruction)

The semantics of our logic is given in Table 7. It is derived
from LTL/CTL-semantics. Definitions of some notations are
given below:

e Satisfaction relations =4, =y, =6, =y, and =g are rela-
ted to formulae ¢, «, 6, ¥ and B (respectively).

e Label functions L,, L, and L; allow to check atomic
propositions at packet level, node level and instruction
level (respectively).

e The “.” operator is used to extract a sub-model from a
given event (e.g. ¢o.CFG means that M¢rg model is
derived from the event ¢y where ¢ is a Packet event).

Examples. In order to better understand the logic constru-
cts, we give hereafter examples of formulae, and we show
how we can verify them against the model given in Fig. 5.
The model, used as example, is built up from a network audit
source. It represents sequence of packets and their associated
CFG graphs. For the sake of convenience, we have reported
in the model only fields of interest (protocol and flags fields).

Example 1: Detection of crafted packets. Abnormal packets
are used by attackers to probe networks or to crash systems.
For example, there are several flag combinations that can be
classified as abnormal. SYN/FIN is one of these malicious
combinations. Indeed, SYN is used to start connection while
FIN is used to end an existing one. It is suspicious to have
these two flags set in conjunction. To detect such packet, we
define the following formula:

$ =

F([((protocol = “tcp”) A (flags = 000011))])

This property allows to verify if there exists a packet
(F ([«])) that satisfies the atomic propositions described by
o (TCP packet with the SYN and FIN flags set). It is clear,

@ Springer

178

Table 7 Semantics

M Ppacket

T g [a]

T =g [a].@

Ty (@1U¢2)

T g (@1V ¢2)

T =y ¢

Packet

ey Fo Ppacket

ey o (a1 Va2)

ey o —a

ey F=q 0

Mcrae

Mcra, so Fo< ¥ >
Mcra, so Fo E(=x ¢ > .0)
Mcra,so Fo EG(9)
Mcra, so Fo E(01U62)

McFaG,so e 01V 02)
McFG, So F=o —0

iff 7[0] =q

iff 7[0] =g [a] and 7! =4 ¢

iff 3j = 01t/ =y ¢o and (VO < k < j, 7 [=4 h1))
iff t '=¢ (bl ort '=¢ ¢>2

iff T ¥ ¢

Hf Ppacker € Lp(e0)

iff eg |=q @ Or eg =g o
iff eg 1 «

iff e9.CFG =g 0

iff 50 =y ¥

iff Mcrg, so Eo< ¥ > and exists s1, successor state of sg, such that Mcrg, s1 Eg 0
iff exists a path w = s¢s7...and for all i € {0, 1, ...} along this path, we have McFrg, si =g 0

iff exists a path w = s¢s1...where Mcrg, so o 61 U6, along this path

(e.g.3j = 0, such that Mcrg, sj ¢ 62 and (VO < k < j, we have McFg, Sk o 01))

iff Mcrg,so0 =g 01 or McFg, so =o 62
iff Mcrg, so > 6

Node
50 By Puode iff Prodge € L (50)
so By (Y1 Vv ¥2) iff so =y Y1 orso =y Y2
S0 Ey —¥ iff 50 3 ¥
so =y B iff so./nst =g B
Minst
o g {Pinst} iff Pipse € Li(a[0])
o =g {Pinst}-B iff o[0] =p {Pinse} and 0! =5 B
o =g (B1UB2) iff 3j > 0, ol =g B2 and (VO < k < j, we have ok =5 B1)
o Ep (B1V B2) iff o =g Broro =g B
o =g —p iff o ¥4 ¢
P, Py Ps Py Ps
1T Cﬁ ubpP 0(1)-(():0}911 o;r (%Z)o 195
A A
{ CFG | } CFG | | CFG | { CFG | | CFG |
o J—— o S e

Fig. 5 Model example

that the model given in Fig. 5 satisfies the formula ¢ (i.e.
Mpacker = @), since there exists a packet (Ps3) that fulfills
the required conditions.

Note that the example given above do not require disas-
sembly, and therefore the CFG graph associated with each
packet is made up of a single empty node. In the next example,
we show how we can perform a deeper analysis (by disas-
sembling and inspecting CFG graphs).

Example 2: CFG graph inspection. Suppose that disassem-
bly process generates for the packet P> the CFG graph given

@ Springer

in Fig. 6. Suppose now that we want to verify if the formula
¢ given hereafter is satisfied by our model or not.

¢ = F(((protocol = “udp”) A 8)])
0 = AGKY »)
v = F({inst = “int})

Formula ¢ allows to verify if there exists an UDP packet
(€ M packer) wWhich associated CFG graph contains at each
node an int instruction. The first condition (protocol = “udp”)
of the formula ¢ is satisfied, since the packet P, fulfills this
condition. Now, we have to verify if the CFG graph (i.e.

Specification and evaluation of polymorphic shellcode properties using a new temporal logic 179

inc

int

int pop

xor int

Fig. 6 CFG graph associated with Packet P>

M rg model) associated with packet P, satisfies the for-
mula 6. To this end, we need to verify if the formula v is
“always” satisfied, which is checked thanks to the AG tem-
poral operator. The formula v allows to verify if the sequence
of instructions (represented by M ,s; model) at node level,
contains an int instruction. This is verified at each node of the
CFG graph associated with packet P, (see Fig. 6). Therefore,
we conclude that the formula ¢ is satisfied.

Note that, the formula ¢ does not characterize a particular
attack. It is defined with the intention to show how we can
specify a more elaborated formulae.

5 Properties specification

Now, we are ready to give the specification of properties
characterizing polymorphic shellcodes.

5.1 Invariant byte sequences detection

Polymorphic shellcode engines are just at their beginning.
Some invariant byte sequences are still observable in the
outputs of a given generator. However, these sequences have
generally small sizes and they cannot alone characterize a
polymorphic code. In the case of Buffer Overflow attacks,
the software vulnerability is usually introduced by means of a
protocol request. For instance, in order to successfully exploit
the “Apache Chunked-Encoding Memory Corruption” vul-
nerability [1]itis necessary to include in the payload, the hea-
der “Transfer-Encoding: chunked”. Furthermore, an exploit
is generally provided with a return adresses list, which are
specific to a given environment (OS/Architecture/Verion of
the vulnerable application). The return address can help to
define an attack signature. For example, in the case of poly-
morphic code, the three high-weight bytes of the return
address can be used to build attack signature, however the
low-weight bits change from one occurrence to another.
Formula given hereafter allows to detect invariant byte
sequences in polymorphic Buffer Overflow attacks. As des-
cribed above, this set comprises invariant exploit framing,

invariant overwrite values and invariant substrings in deci-
pher routine. The formula is specific to attacks that exploit
the “Apache Chunked-Encoding Memory Corruption” vul-
nerability in NetBSD systems. It allows to detect malicious
payload generated by Clet engine.

F([(((protocol = “tcp”) N(dport = 80)) A (body = X
+“Transfer — Encoding : chunked” + Y + “\x74\x07\xeb”
+Z 4+ \xf\S N7+ T + \xfa\x0e\x08” + V))])

The flaw “Apache Chunked-Encoding Memory Corrup-
tion” is related to HTTP protocol, which explains the first
part of the propriety. The second part allows to verify if the
body field contains the following patterns:

“Transfer-Encoding: chunked”: invariant exploit framing
NxTAXO0T\xed”, “\xff\xff\xff” and “\xfa\x0e\
x08”: invariant substrings in Clet’s decipher routines.

e “\xfa\x0e\x08”: three high-weight bytes of the return
address 0x080efa00 (overwrite value related to NetBSD
systems).

5.2 FAKE_NOP detection

As described in Sect. 2, the FAKE_NOP are added at the
beginning of the payload to compensate the return address
estimation error. The FAKE_NOP section size depends on
the vulnerability, but it is generally quite large (more than
hundred instructions). A large sequence of consecutive
FAKE_NOP instructions is one of the characteristics of poly-
morphic shellcodes. Several solutions [16,40,44] base their
detection on the FAKE_NOP. Thanks to our logic, it is also
possible to specify a property allowing to detect FAKE_NOP
instructions:

F([((protocol = “tcp”, “udp”) N (< G({opcode = S}) >
A < (size > 100) >))])

with S =*\x04”, “\x05”, “\x06”, “\x0c”, “\x0d”, etc., (set
of FAKE_NOP instructions defined in ecl-poly list).

This formula allows to detect if there exists a packet, where
the first node of its associated CFG graph contains only ins-
tructions belonging to the set S. Note that many tools such
as FNORD [40] base their detection on the FAKE_NOP list
issued from the source code of ADMmutate engine. This list
is not complete and contains only one-byte instructions. In
our specification, we use the FAKE_NOP list (set S) defined
in ecl-poly tool. This list extends the one used by ADMmu-
tate engine, and includes several-bytes instructions. Thus, the
formula given above allows to detect (one/several)-bytes of
FAKE_NOP instructions sequence.

Note however, that some Buffer Overflow attacks do not
require FAKE_NOP zone. In such attacks, the malicious code
is stored in memory above the return address (above the EIP
pointer in Fig. 1). Then, this address is overwritten with a one

@ Springer

180

M. Talbi et al.

jmp Node 1

Node 2

=
)
Q.
o
W

Pop,

I ca!linstruction

: Jmp instruction

[Sarith iNstructions
[kS,

xor :
add Node 5

;:MOV:: jmp

instructions

trans
H Siogic instructions

|7/ 7} Sqaq instructions
E Spranc instructions

| Others instructions

Fig. 7 Example : Decipher routine structure of Clet engine

that points to a jmp %esp instruction. Such kind of attacks
can be detected by adding in our formula the list of return
addresses which point to jmp %esp instruction. This list can
be extracted, for instance, from the Metasploit database.

5.3 Decipher routine detection

CFG graph representation of several instances of polymor-
phic shellcodes generated by the same engine (e.g. Clet),
reveals that the structure of the decipher routine is practically
the same for a given input (e.g. /bin/sh shellcode). CFG nodes
are interconnected to each other in the same way. Moreover,
these nodes often contain the same instruction classes (see
Table 9). As we will see in Sect. 7, 97% of instances generated
by Clet engine share the same structure given in Fig. 7. This
figure represents the decipher routine structure generated by
Clet engine for a given input (/bin/sh shellcode).

To detect the decipher routine specific to Clet engine, we
define the property given hereafter. Table 8 explains the mea-
ning of each part of the formula.

F([((protocol = “tcp”, “udp”) N

EF(E(< F({opcode = “\xeb”}) > .

E(< F({opcode = “\xe8”}) > .

E(< (F({inst = Saritn, Slngic}) N

F{inst = Sirans})) N F({inst = Sgack})) > .

E(< (((F({inst = Sarith, Slogic}) A

F({inst = Sirans})) A F({inst = Spranc})) A (id = X)) > .
E(< F({opcode = “\xeb}) = . < (id = X) >))))))])

This property allows to verify if there exists a path (e
M rg) along which we have, somewhere, the following
sequence of nodes:

1. A node containing the instruction jmp,
2. A node containing the instruction call,

@ Springer

3. A node containing ‘“stack” instructions (e.g. pop),
logic/arithmethic instructions (e.g. xor) and data trans-
fert instructions (e.g. mov),

4. Anode containing logic/arithmethic instructions and data
transfert instructions. This node ends with conditional
branch instruction (e.g. je), leading to either node 5, or
to node 6 which is the most often invalid (contains invalid
instructions), and

5. A node containing the instruction jmp leading to the
node 4.

More precisely, we are looking for the sequence of nodes
given by:

Ticlert = Nodey, Nodey, Nodes, Nodes, Nodes, Nodey

We define hereafter the properties characterizing the deci-
pher routines of ADMmutate and JempiScode engines, in a
similar manner to the Clet engine.

Property characterizing the decipher routine of ADMmu-
tate engine can be specified as following:

F([((protocol = “tcp”, “udp”) N EF (E(< F({opcode

= “\xeb’}) > .E(< F({opcode = “\xe8"}) > .

E(< (F({inst = “xor”}) A

F({inst = Strans, Sstack})) > -E(< ((F({inst = “xo0r”}) A
F{inst = Sarizn})) A F{inst = Spranc})) > .

< F({opcode = “\xeb™}) >))))])

Property characterizing the decipher routine of Jempi-
Scode engine can be specified as following:

F([((protocol = “tcp”, “udp”) N EF(E(< F({opcode
= “\xeb”}) > .E(< F({opcode = “\xe8"}) > .

E(< (F({inst = Syack}) AN F({inst = Saritn})) > -
E(< F{inst = Sqritn} N Flinst = Spranc} > -

< F(fopcode = “\xeb}) >))))])

The previously specified properties are resilient to com-
mon obfuscation techniques used by hackers:

e Resilience to instruction substitution (up to a certain
limit): the simple fact of replacing, for example, inc % eax
with sub $Oxfffffff, %eax will have no impact on for-
mulae, given that sub, inc € S;i7.

e Resilience to instruction insertion: following execution
trace during disassembly allows us to exclude junk ins-
tructions.

e Resilience to register renaming: the arguments of instruc-
tions are not taken into account.

e Resilience to code transposition: the order of instructions
at node level is not taken into account.

Classes of instructions shown in Table 9 help to counteract
the metamorphism. However, an attacker can use semanti-
cally equivalent instructions from different classes. For ins-
tance, mov %eax, %ebx (class S;,,5) can be substituted

Specification and evaluation of polymorphic shellcode properties using a new temporal logic 181

Comments

Table 8 Property characterizing Formula
the decipher routine of Clet
engine ¢ = F([a])

a = (a; Aap)

LT3

a1 = (protocol = “tcp”, “udp”)

ar = EF(6)

0=EY > . E(=VYr> . E(<yY3>.

Verity if there exists a packet (€ M pycker) that

satisfies o

Only tcp and udp packets are inspected
Verity if there exists a path 71 € M¢ g along
which 6 is satisfied at a given moment in the future

Verity if the path 7 contains the sequence of nodes 7.,

E(< 44 > E(=x Y5> . < VY5 >))))

Y1 = F(p1)

p1 = {opcode = “\xeb”}
V2 = F(p2)

p2 = {opcode = “\xeb”}

V3 = ((F(p3) A F(pa)) A F(ps))

p3 = {inst = Sarith, Siogic}
p4 = {inst = Sirans}
ps = {inst = Sgtack}

Va = ((F(p3) A F(pa)) A F(pe))

A (id = X))

P6 = {il’lSl = Sbranc}
Ys = F(p1)

Ve = (id = X)

Verify if there exists an instruction € M, (model
associated with the 1st node of the sequence 7 /¢
(i.e. w0 [1])) that satisfies the atomic proposition p
Jmp instruction (jmp [byte])

Verify if there exists an instruction € My, , (model
associated with 7..,[2]) that satisfies p>

Call instruction (call [dword])

Verify if p3, ps and ps are satisfied in M5, (model
associated with ../ [3])

See Table 9

See Table 9

See Table 9

Verify if p3, ps and pg are satisfied in M ,5; (model
associated with 7. [4])

See Table 9

Verity if pj is also satisfied in M ,5; (model associated
with 7wee [5])

Loop Detection. The jmp of node 5 leads to node 4

Table 9 Instruction classes

Instructions Class
Sarith = inc, sub, add, dec Arithmetic
Siogic = Xor, ror, rol, and, not Logic

Strans = mov, xchg Data Transfert

Sstack = push, pop Stack
Sbranc = j€, jne, jz, loop, Conditional
loopne, loopnz Branch

with push %eax; pop %ebx (class Sg;qcr). For this sce-
nario, the end-user can define and adapt its own instruction
classes according to the different combinations observed in
the source code of a given polymorphic engine. Note that
there is few substitutions involving instructions belonging
to different classes. In certain cases, it is even impossible
to replace an instruction with a semantically equivalent one
(e.g. int instruction).

6 Implementation: the tool IDS-Logic
6.1 Overview

In this section we give a brief overview of our IDS proto-
type, written in Java and called IDS-Logic, which is based
on the proposed logic. The tool IDS-Logic has a simple and
user-friendly interface allowing the end-user to specify his
properties and their associated parameters (see Fig. 8). As any
language, IDS-Logic provides a compiler that allows mainly
to check the syntax of the specified properties. IDS-Logic is
also endowed with a model checker allowing to verify the
specified properties against a model built up from the audit
trail. IDS-Logic is available at [43], from where it is possible
to download the source code.

6.2 Architecture

The architecture of our IDS prototype is given in Fig. 9.
Hereafter, we give a description of its main components.

@ Springer

182

M. Talbi et al.

Fichier Edit Outils Help
0O & & B = &K e

Greeks

AITows Symbaol Maths Other

€E pv|Niw e x| p oA ¢ @ 0 |n

DISAS(D)

VAR

typel : arithm = "add", "sub", "inc", "dec";
typel : logic = "not", "ror", "rol", "and",
typel : trans = "mov", "xchg";

typel : stach

typel : branc = jz", "loop

type2 : paraml;

SPEC

FCL((protocol="tcp", "udp")
E(<((F({inst=arithm, logic}) A F({inst=trans}))

E(<(((F({inst=arithm,

F{L{{protocaTl="tcp"

(ttu[((protocol="tcp", "udp") AE(ttUE(=<(ttu{«

"loopne",

n EF(E(<F({opcodes="eb"})> .E(<F({opcodes="e3"})>.
A F({inst=stack}))>.

ogic n F({inst=trans}))
(id=paraml))>.E(<F({opcodes="eb"})>.<(id=paraml w),;;;})]) : CLET;

,"udp™) AEF{E(<F{{opcodes="eb"})> .E(<F{{opcodes=
codes="eb"}) > .E(<(ttu{opcodes="
(ttu[((protocol="tcp","udp") AE(ttUE(<(ttu{opcodes="eb"})» .E(<(ttu{opcodas=""

"loopnz";

. F({inst=brancl))

"eB"). EI’<||F {1n

"eg" P> . E(<(((ttyu

(ttu[((protocol="tcp", "udp") AECttUE(<(ttu{op -q—“nb"}).\ E(<(ttu{opcodes=
(ttu[((p ocol="tcp", "udp") AE(ttUE(=<(ttu{opcodes="eb"})> .E(<(ttu{opcoc 8" P E(<(((ttu
(ttu[-(~(protocol="tcp", "udp") v-E(ttUE(<(ttu{opcodes="eb"})> .E(<(ttu{opcodes="e8"}) > .E(<~(~
Réultat : [CLET]true
i »
cletlogic saved
Fig. 8 IDS-Logic interface
Properties specification Properties
Specification
Properties are specified through “.logic” files which have the Brer Y
following structure: Instructions o Compilation Logic : Syntax
g Dictionary ucityrail Sg;;if(‘i:al Rules Lex & Yacc
oK
DISAS(pos) v ¥ e~
N ogic : Macros
VAR Disassembly DISAS? . Properties Ly 1 ko 7gy)=n(0vaop)
ransformation
typey vary = valuey; S
(o]
typey varp-var3-vary, ¥ l
Model Execution o i
SPEC Construction ForrrfalCl:\;cklng o Logic : Semantics
formulay : titley;
formulas : titley; |
T . TRUE : Attack FALSE : - Attack
formula, : titley;

The proposition DISAS is related to disassembly. The
clause VAR! allows the user to define his variables. We
define two types of variables: type; is similar to “#define”
in C programming language; variables of type, are used in
atomic propositions (e.g. protocol = vary). Properties are
specified through the reserved word SPEC. A name can be
attributed to a property so that it could be referred later in
other formulae or in the output of the analysis.

! Clause VAR is optional

@ Springer

Fig. 9 IDS-Logic architecture

Compilation: syntactical checking

Syntactical checking consists to ensure that the properties
are specified while respecting the clauses defined above. It
ensures also that the specified formulae are well formed (i.e.
properties respect the logic grammar). This procedure is rea-
lized by the use of Flex and Bison tools [4].

Specification and evaluation of polymorphic shellcode properties using a new temporal logic 183

Properties transformation

If the specified properties are free of syntax errors, they
will be transformed according to the abbreviations given by
Table 6. The idea behind these abbreviations is to imple-
ment only a few numbers of operators (those of the proposed
logic). The rest can be derived from them. For instance, it is
not necessary to implement the A operator, since it can be
derived from the disjunction (V) and negation (—) operators.

Model construction

This component allows to build up the model defined in
Sect. 3 from an audit file (“.net” file). First, the audit file
is parsed in order to construct the sequence of packets (i.e.
M packer model). Then, if disassembly is enabled (i.e. CFG
(pos), pos > 0), the body of each packet (¢ M pycker) 1S
disassembled in order to construct the CFG graph (M¢rg
model). Note that IDSs are prone to real time constraints
which result in the number of packets analyzed per second.
Disassembly is an expensive operation that can slow down
the IDS treatments. For that purpose, it is imperative to find
a solution that optimize the disassembly process. The disas-
sembler used in APE allows to solve this problematic. Their
disassembler is based on a dictionary of instructions. We fol-
low a similar approach for disassembly.

Execution: formal checking

This is the main part of the system. It implements the satis-
faction relation “[=" of the logic semantics defined in Table 7.
The model checker takes a model M (built up from the audit
trail) and a formula ¢ (specified by the end-user), and verify
whether M = ¢ or not. At the end of this stage, the sys-
tem gives us the detection results: “true” indicates that the
analyzed flow contains the attack-evidence described by the
specified formula.

7 Properties evaluation

In this section, we evaluate the efficiency of each property
in terms of false positives and false negatives. To this end,
we have to define first datasets of network traffic. Publi-
cly available datasets (e.g. MIT Lincoln Lab datasets [6])
are a tremendous asset for the intrusion detection commu-
nity. However, these datasets have some problems and have
been criticized by many researchers. For instance, McHugh
pointed out in [34] that the background traffic was generated
using too simple models, and if real background traffic was
used, it would produce a higher rate of false positives. Moreo-
ver, these datasets are not adapted to our study, since we are

interested only in polymorphic Buffer Overflow attacks. For
all these reasons, we have chosen to define our own datasets.?

7.1 False positives/true positives
Datasets

To evaluate our properties in terms of false/true positives, we
have defined two datasets.

e HTTP traffic: this first dataset was given to us by the
Higher School of Electricity (Supelec Rennes). This eva-
luation set contains TCPdump data consisting of only
HTTP requests (102582 packets). This traffic was col-
lected over two weeks, and was verified to be free of
polymorphic attacks. This dataset was used exclusively
to evaluate the Invariant Byte Sequences property.

e ELF binaries: we have sent via FTP the content of /bin,
/usr/bin, /sbin, and /usr/sbin directories of a Fedora Core 6
Linux distribution (fresh installation). Then, we have cap-
tured all the resultant FTP traffic (246157 packets). ELF
binaries were sent to a local FTP sevrer (running on the
localhost machine), which is connected to any network.
Thus, the resultant FTP traffic is free of attacks. This data-
set was used to evaluate the properties that require disas-
sembly. The use of such dataset is motivated by the fact
that ELF binaries contain executable code, and therefore
they are most likely to give false alarms.

Then, we have developed a Java application® (using the
jpcap package) in order to translate data from TCPdump for-
mat to a more simplistic one:

protocol | saddr | sport | daddr |
dport | flags | frags | body

Results

Table 10 shows the obtained results. No false positives were
reported during the evaluation of the Invariant Byte
Sequences Property. The FAKE_NOP property generated
many false positives (48 analyzed packets have raised an
alarm). This implies that certain solutions which base their
detection only on the FAKE_NOP can be inefficient. Finally,
no false positives were reported during the evaluation of the
Decipher Routine Properties. Several factors can explain this
result:

2 The datasets are available upon request to the authors.
3 This tool is available at [43].

@ Springer

184

M. Talbi et al.

Table 10 Number of false/true positives

Table 11 Number of false/true negatives

Property False Positive True Positive Property False Negative True Negative
Invariant Byte Sequences 0 102582 Invariant Byte Sequences 0 100
FAKE_NOP 48 246109 FAKE_NOP 0 100
Clet Decipher Routine 0 246157 Clet Decipher Routine 3 97
ADMmutate Decipher Routine 0 246157 ADMmutate Decipher Routine 4 96
JempiScode Decipher Routine 0 246157 JempiScode Decipher Routine 0 100

e The defined properties are very specific.

Itis difficult to find ELF binaries that share common struc-
tural characteristics (same CFG structure, same instruc-
tion classes at node levels) with polymorphic shellcode
engines.

e ELF binaries were fragmented into several packets during
their transmission via FTP. Fragmentation had led, in
certain cases, to the termination of the disassembly pro-
cess (e.g. address of a control flow instruction is out of
bounds).

e Finally, our disassembler does not support the whole ins-
truction set of the Intel manual [3] (e.g. MMX and SIMD
instructions are not supported). This perhaps led to invalid
instructions during disassembly.

7.2 False negatives
Datasets

To evaluate our properties in terms of false/true negatives,
we have developed some shell scripts allowing to generate
sanitized audit files (i.e. “.net” files) in the format of our IDS
prototype. The content of these audit files changes depending
on the property to be evaluated:

e Invariant Byte Sequences Property: a set of chunked
HTTP requests that contain Clet decipher routine.

e Decipher Routine Properties: three sets of packets contai-
ning each one 100 outputs generated by Clet, ADMmutate
and JempiScode engines (respectively).

e FAKE_NOP Property : a mix of FAKE_NOP generated
by ADMmutate and Clet engines.

Results

Table 11 shows the obtained results. No false negatives were
reported during the evaluation of the Invariant Byte
Sequences Property. This implies that the invariant byte
sequences scattered over the malicious code are sufficient
to characterize polymorphic codes generated by Clet engine.
This illustrates some weaknesses of this engine.

@ Springer

‘We obtained a detection rate of 100% for the FAKE_NOP
property. This result was expected. Indeed, the property was
specified using a FAKE_NOP list that includes all instruc-
tions used by ADMmutate and Clet engines. A large number
of Clet engine instances (97 out of 100) were detected by the
Decipher Routine Property. For the three non-detected ins-
tances, the CFG structure was different from the one given
by Fig. 7. This was due to the presence of branch instruc-
tions (i.e. Sprqnc instructions) in the node corresponding to
the ciphered shellcode (node 6 in Fig. 7). As consequences,
some nodes of the CFG graph were splitted into two blocks.
In that case, the property is not satisfied any more. Four
instances of ADMmutate engine was non-detected for the
same reasons. This does not happened during the evaluation
of JempiScode Decipher Routine Property, where we have
obtained a detection rate of 100%.

8 Related work

Several preventive techniques have been proposed during the
last years to prevent from Buffer Overflow attacks. Some
of them tried to act at kernel level (e.g. PAX [10], Open-
wall [9]) by patching them, others prefer modifying compi-
lers (e.g. StackGuard [22], Stack Shield [13]), while others
move toward using dynamic libraries (e.g. Libsafe [19]).
Although the significant contributions of these preventive
techniques, they can be evaded [18,21,23,45] and the
problem is far from being resolved efficiently.

Polymorphic Buffer Overflow attacks are more challen-
ging, and several techniques have been proposed in the lite-
rature to detect them. These detective techniques can be
classified into two approaches: misuse-based approach and
anomaly-based approach. Regarding the former, protection is
usually provided by parsing network traffic in order to detect
matches with previously defined malicious patterns. Misuse-
based IDSs generally produce low false positives rates, but
they are not able to detect novel attacks. In contrast, anomaly-
based approaches base their detection on a profile of normal
network traffic, often built up using Data Mining techniques.
Anomaly-based IDSs are able to detect novel attacks, but
generally have a high rate of false positives.

Specification and evaluation of polymorphic shellcode properties using a new temporal logic 185

Almost all proposed techniques fall into the misuse-
detection field. These techniques can be classified into three
categories: FAKE_NOP (e.g. FNORD, APE, STRIDE), Inva-
riant Byte Sequences (e.g. Polygraph [35]) and Decipher
Routine [31] detection systems.

FNORD, APE and STRIDE base their detection on the
FAKE_NOP. FNORD is the most basic one. It maintains a list
of one-byte FAKE_NOP instructions (ADMmutate list) and
applies pattern matching techniques. It is possible to bypass
FNORD by using several-bytes FAKE_NOP instructions.
APE and STRIDE are more advanced tools since they per-
form code disassembly. For instance, APE disassembles the
code from randomly chosen positions and reports each time
the number of valid instructions: MEL (Maximum Execution
Length). If the MEL value is greater than a fixed threshold
(MEL > 35), then an alert is raised. APE and STRIDE allows
to detect (one/several)-bytes FAKE_NOP instructions. Note
however that some Buffer Overflow attacks do not require
FAKE_NOP instructions at all, and therefore they cannot be
detected by these solutions.

Polygraph uses a set of byte sequences (e.g. exploit fra-
ming, overwrite values, invariant substrings in decipher
routine), that are common to different instances of a given
polymorphic shellcode engine, in order to automatically
generate signatures allowing to detect such patterns. Poly-
graph generates three categories of signatures: Conjunction
signatures, Token-subsequence signatures and Bayes Signa-
tures. Conjunction signatures allow to check if the analy-
zed flow contains, in any order, the patterns described by
these signatures, whereas in Token-subsequence signatures,
the order of patterns is taken into account. Finally, Bayes
signatures consist in weighting patterns.

Another interesting observation is that there is also
structural similarities (e.g. invariance of the decipher routine
structure) between mutations of a polymorphic shellcode.
Christopher Kriigel el al. exploited this fact in [31] in order
to automatically generate fingerprints that characterize inva-
riant structures of polymorphic shellcodes. Fingerprints
generation involves three processes. First, a polymorphic
shellcode is disassembled and abstracted by a CFG graph.
Then, all connected k-subgraphs (subgraph with k nodes) are
extracted from the CFG graph. Finally, a fingerprint is gene-
rated for each subgraph. Fingerprints record how k-subgraph
nodes are interconnected to each other, and which classes
of instructions (e.g. arithmetic instructions) are contained at
each node.

Thanks to the proposed logic, we were able to specify
properties which are equivalent to the signatures generated
by the detective techniques detailed above. Indeed, properties
defined in Sect. 5 are formal specification of these techniques.

Finally, to conclude with misuse-based approches in the
field of polymorphic code detection, we can cite the for-
mal approach proposed in [25]. In this approach, code muta-

tion techniques such as polymorphism and metamorphism
are formalized by means of formal grammars. A grammar
is defined by an alphabet (e.g. instructions) and a rewri-
ting system. The idea behind this grammar is to define a
formal language that represents the different forms that a
(polymorhic/metamorphic) code can take with respect to this
grammar. The detection technique is based on a language
decision problem which consists in determining whether a
given mutated code is an instance of the formal language or
not.

Regarding anomaly-based approaches, there is only few
works [36,37] that focus mainly on polymorphic shellcodes.
In these works, Data Mining methods are used as a learning
process which is performed over a set of samples (positives
and negatives datasets). For instance, in [37] authors sug-
gest the use of Neural Networks as training process, whereas
in [36] authors propose to use the Markov Chains. Note that,
Clet engine is endowed with a spectrum analysis mechanism
which was designed in order to defeat Data Mining methods.
However, evaluation results obtained in [36,37] show a detec-
tion rate of 100% for Clet engine with a low rate of false
positives.

9 Conclusions

Buffer Overflow attacks are very powerful. Allied to the poly-
morphism power, their detection becomes very difficult. In
view of this problematic, which constitutes a real challenge,
we have proposed in this paper a new formal language allo-
wing the specification of a large variety of properties cha-
racterizing polymorphic shellcodes. Simple and expressive,
the proposed language is the fruit of temporal logics (LTL
and CTL) combination. This point has been a main goal
during the conception phase. Firstly, the simplicity in order
to allow the end-user to easily translate his observations into
formal specification. Secondly, the expressiveness in order
to specify a large variety of polymorphic shellcode proper-
ties. In addition, the proposed language is not limited to the
characterization of polymorphic shellcodes, but can be used
to other ends such as the specification of formulae charac-
terizing a multitude of TCP/IP based attacks (e.g. Crafted
Packets, Fragment Attacks). Moreover, the worms spreading
over Internet are frequently coded in assembler, and polymor-
phism/methamorphism techniques are often used by virus
authors. The language that we propose can then be used to
reflect the behavior of such codes. For example, many worms
use the mail as spreading means. These worms contain frag-
ments of code, allowing among others, to get the content of
the address book (next targets of the virus). The structure of
these fragments are often unchanged for a given virus family.
Therefore, the invariant part can be characterized by proper-
ties. Finally, in order to validate our work, we have develo-

@ Springer

186

M. Talbi et al.

ped an IDS prototype that implements the proposed logic.
The results of the evaluation process show a good tradeoff
between false positives and false negatives.

References

bt

® Nk

o

11.
12.
13.
14.
15.

16.

19.

20.

21.

22.

23.

24.

. CAN-2002-0392 - apache chunked-encoding memory corruption

vulnerability. http://www.securityfocus.com/bid/5033/discuss
Flawfinder. http://www.dwheeler.com/flawfinder

IA-32 intel architecture software developer’s manual-instruction
set reference. http://www.intel.com/design/pentium4/manuals/
index_new.htm

The lex & yacc page. http://dinosaur.compilertools.net/
Metasploit. http://www.metasploit.com/

MIT lincoln laboratory. http://www.ll.mit.edu/

National vulnerability database. http://nvd.nist.gov/statistics.cfm
Nessus. http://www.nessus.org

Openwall. http://www.openwall.com/

PAX. http://pax.grsecurity.net/docs/index.html

Rats. http://www.securesoftware.com

Retina. http://www.eeye.com

Stack Shield. http://www.angelfire.com/sk/stackshield/
US-CERT. http://www.us-cert.gov/

Adi, K., Debbabi, M., Mejri, M.: A new logic for electronic com-
merce protocols. Theor. Comput. Sci. 291(3), 223-283 (2003)
Akritidis, P., Evangelos, P., Markatos, Polychronakis, M., Kostas,
G., Anagnostakis: STRIDE: Polymorphic sled detection through
instruction sequence analysis. In: SEC, pp. 375-392 (2005)

. Alephl. Smashing the stack for fun and profit. http://www.phrack.

org/issues.html?issue=49&id=14

. Bailleux, C., Grenie, C.: Protections contre 1’exploitation des

débordements de buffer - bibliotheques et compilateurs. http://
www.miscmag.com/

Baratloo, A., Singh, N., Tsai, T.: Libsafe: Protecting critical ele-
ments of stacks

Beaucamps, P., Filiol, E.: On the possibility of practically obfusca-
ting programs towards a unified perspective of code protection. J.
Comput. Virol. 3(1), 3-21 (2007)

Bulba and Kil3r. Bypassing Stackguard and Stackshield. http://
www.phrack.org/issues.html?issue=56&id=5

Cowan, C., Pu, C., Maier, D., Hintony, H., Walpole, J., Bakke, P.,
Beattie, S., Grier, A., Wagle, P., Zhang, Q.: Stackguard: automatic
adaptive detection and prevention of buffer-overflow attacks. In:
SSYM. USENIX Association (1998)

Solar Designer. Getting around non-executable stack (and fix).
http://www.securityfocus.com/archive/1/7480

Detristan, T., Ulenspiegel, T., Malcom, Y., Superbus M., Von
Underduk.: Polymorphic shellcode engine using spectrum ana-
lysis. http://www.phrack.org/issues.html?issue=61&id=9

@ Springer

26.

217.

28.
29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

Filiol, E.: Metamorphism, formal grammars and undecidable code
mutation. Int. J. Comput. Sci. 2(1), 70-75 (2007)

Ben Ghorbel, M., Talbi M., Mejri, M.: Specification and detection
of TCP/IP based attacks using the ADM-logic. In: ARES, pp. 206—
212. IEEE Computer Society (2007)

Gushin, Y.: Nids polymorphic evasion - the end? http://www.
ecl-labs.org/papers.html

K2. Admmutate. http://www.ktwo.ca/

Kolesnikov, O., Lee, W.: Advanced polymorphic worms: Evading
IDS by blending in with normal traffic (2004)

Kripke, S.A.: Semantical considerations in modal logic. Acta Phi-
losophica Fenica 16, 83-94 (1963)

Kriigel, C., Kirda, E., Mutz, D., Robertson, W.K., Vigna, G.: Poly-
morphic worm detection using structural information of execu-
tables. In: RAID, pp. 207-226 (2005)

Lespérance, P.L.: Detecting variants of known attacks using tem-
poral logic. In: WPTACT (2005)

Lions, J.L.: ARIANE 5: Flight 501 failure. http://sunnyday.mit.
edu/accidents/Ariane5accidentreport.html

McHugh, J.: Testing intrusion detection systems: a critique of
the 1998 and 1999 darpa intrusion detection system evaluations
as performed by lincoln laboratory. ACM Trans. Inform. Syst.
Security 3(4), 262-294 (2000)

Newsome, J., Karp, B., Xiaodong Song, D.: Polygraph: automa-
tically generating signatures for polymorphic worms. In: IEEE
Symposium on Security and Privacy, pp. 226-241 (2005)

Payer, U., Kraxberger, S.: Polymorphic code detection with GA
optimized markov models. In: Communications and Multimedia
Security, pp. 210-219 (2005)

Payer, U., Teufl, P., Lamberger, M.: Hybrid engine for polymor-
phic shellcode detection. In: Julisch, K., Kriigel, C. (eds.) DIMVA,
vol. 3548. Lecture Notes in Computer Science, pp. 19-31. Sprin-
ger, Berlin (2005)

Plotkin, G.D.: A structural approach to operational semantics.
Technical Report DAIMI FN-19, University of Aarhus (1981)
Writing, R.: IA32 alphanumeric shellcodes. http://www.phrack.
org/issues.html?issue=57&id=15

Ruiu, D.: Snort preprocessor—multi-architecture mutated NOP
sled detector
Sedalo, M.:
proyectos.html
Stirling, C.: Modal and temporal logics for processes. In: Pro-
ceedings of the VIII Banff Higher order workshop conference on
Logics for concurrency : structure versus automata, pp. 149-237.
Springer, Berlin (1996)

Talbi, M.: IDS-logic. http://www.rennes.supelec.fr/ren/perso/
mtalbi/outils/IDS-Logic.tar.gz

Toth, T., Kriigel, C.: Accurate buffer overflow detection via abs-
tract payload execution. In: RAID, pp. 274-291 (2002)
Wojtczuk, R.: The advanced return-into-lib(c) exploits: PAX case
study. http://www.phrack.org/issues.html?issue=58&id=4

JempiScode. http://goodfellas.shellcode.com.ar/

http://www.securityfocus.com/bid/5033/discuss
http://www.dwheeler.com/flawfinder
http://www.intel.com/design/pentium4/manuals/index_new.htm
http://www.intel.com/design/pentium4/manuals/index_new.htm
http://dinosaur.compilertools.net/
http://www.metasploit.com/
http://www.ll.mit.edu/
http://nvd.nist.gov/statistics.cfm
http://www.nessus.org
http://www.openwall.com/
http://pax.grsecurity.net/docs/index.html
http://www.securesoftware.com
http://www.eeye.com
http://www.angelfire.com/sk/stackshield/
http://www.us-cert.gov/
http://www.phrack.org/issues.html?issue=49&id=14
http://www.phrack.org/issues.html?issue=49&id=14
http://www.miscmag.com/
http://www.miscmag.com/
http://www.phrack.org/issues.html?issue=56&id=5
http://www.phrack.org/issues.html?issue=56&id=5
http://www.securityfocus.com/archive/1/7480
http://www.phrack.org/issues.html?issue=61&id=9
http://www.ecl-labs.org/papers.html
http://www.ecl-labs.org/papers.html
http://www.ktwo.ca/
http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html
http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html
http://www.phrack.org/issues.html?issue=57&id=15
http://www.phrack.org/issues.html?issue=57&id=15
http://goodfellas.shellcode.com.ar/proyectos.html
http://goodfellas.shellcode.com.ar/proyectos.html
http://www.rennes.supelec.fr/ren/perso/mtalbi/outils/IDS-Logic.tar.gz
http://www.rennes.supelec.fr/ren/perso/mtalbi/outils/IDS-Logic.tar.gz
http://www.phrack.org/issues.html?issue=58&id=4

	Specification and evaluation of polymorphic shellcode properties usinga new temporal logic
	Abstract
	1 Introduction
	2 Polymorphic shellcodes
	2.1 Exploiting buffer overflow vulnerabilities
	2.2 Shellcode obfuscation techniques

	3 Model
	4 Specification language
	4.1 Temporal logics
	4.2 Proposed logic

	5 Properties specification
	5.1 Invariant byte sequences detection
	5.2 FAKE_NOP detection
	5.3 Decipher routine detection

	6 Implementation: the tool IDS-Logic
	6.1 Overview
	6.2 Architecture

	7 Properties evaluation
	7.1 False positives/true positives
	7.2 False negatives

	8 Related work
	9 Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

